Non Deterministic Automata

Nondeterministic Finite Accepter (NFA)

Alphabet =
$$\{a\}$$

Nondeterministic Finite Accepter (NFA)

Alphabet =
$$\{a\}$$

Nondeterministic Finite Accepter (NFA)

Alphabet =
$$\{a\}$$

Observation

An NFA accepts a string if there is a computation of the NFA that accepts the string

Example

aa is accepted by the NFA:

Lambda Transitions

 $\begin{bmatrix} a & a \end{bmatrix}$

(read head doesn't move)

"accept"

String aa is accepted

Language accepted: $L = \{aa\}$

$$-(q_0) \xrightarrow{a} (q_1) \xrightarrow{\lambda} (q_2) \xrightarrow{a} (q_3)$$

Another NFA Example

Another String

Language accepted

$$L = \{ab, abab, ababab, ...\}$$

= $\{ab\}^+$

Another NFA Example

Language accepted

$$L = {\lambda, 10, 1010, 101010, ...}$$

= ${10}*$

Formal Definition of NFAs

 $M = (Q, \Sigma, \delta, q_0, F)$

Q: Set of states, i.e. $\{q_0, q_1, q_2\}$

 Σ : Input aplhabet, i.e. $\{a,b\}$

 δ : Transition function

 q_0 : Initial state

F: Final states

Transition Function δ

$$\delta(q_0,1) = \{q_1\}$$

$$\delta(q_1,0) = \{q_0,q_2\}$$

$$\delta(q_0,\lambda) = \{q_0,q_2\}$$

$$\delta(q_2,1) = \emptyset$$

Extended Transition Function

$$\delta * (q_0, a) = \{q_1\}$$

$$\delta * (q_0, aa) = \{q_4, q_5\}$$

$$\delta * (q_0,ab) = \{q_2,q_3,q_0\}$$

Formally

It holds
$$q_j \in \delta^*(q_i, w)$$

if and only if

there is a walk from q_i to q_j with label w

The Language of an NFA

$$\delta * (q_0, aa) = \{q_4, q_5\}$$
 $aa \in L(M)$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_6$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\lambda$$

$$\delta * (q_0, ab) = \{q_2, q_3, \underline{q_0}\} \qquad ab \in L(M)$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta * (q_0, abaa) = \{q_4, q_5\}$$
 $aaba \in L(M)$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_6$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta * (q_0, aba) = \{q_1\}$$

 $aba \notin L(M)$

$$L(M) = \{aa\} \cup \{ab\}^* \cup \{ab\}^+ \{aa\}$$

Formally

• The language accepted by NFA M is:

$$L(M) = \{w_1, w_2, w_3, ...\}$$

• where
$$\delta * (q_0, w_m) = \{q_i, q_j,\}$$

and there is some

$$q_k \in F$$
 (final state)

 $w \in L(M)$ $\delta^*(q_0, w)$ W $q_k \in F$

Equivalence of NFAs and DFAs

Equivalence of Machines

- For DFAs or NFAs:
- ullet Machine M_1 is equivalent to machine M_2

if
$$L(M_1) = L(M_2)$$

Example

NFA M_1

$$L(M_1) = \{10\} *$$

$$L(M_2) = \{10\} *$$

• Since
$$L(M_1) = L(M_2) = \{10\}$$
*

machines $_{M_1}$ and $_{M_2}$ are equivalent

DFA M_2 q_0 q_1 q_2

0,1

Equivalence of NFAs and DFAs

Question: NFAs = DFAs?

Same power?

Accept the same languages?

Equivalence of NFAs and DFAs

Question: NFAs = DFAs? YES!

Same power?

Accept the same languages?

We will prove:

```
    Languages

    accepted

    by NFAs

    Languages

    accepted

    by DFAs
```

We will prove:

NFAs and DFAs have the same computation power

 Languages

 accepted

 by NFAs

 Languages

 accepted

 by DFAs

```
    Languages

    accepted

    by NFAs

    Languages

    accepted

    by DFAs
```

Proof: Every DFA is also an NFA

 Languages

 accepted

 by NFAs

 Languages

 accepted

 by DFAs

Proof: Every DFA is also an NFA

A language accepted by a DFA is also accepted by an NFA

 Languages

 accepted

 by NFAs

 Languages

 accepted

 by DFAs

Proof: Any NFA can be converted to an equivalent DFA

Proof: Any NFA can be converted to an equivalent DFA

A language accepted by an NFA is also accepted by a DFA

NFA to DFA

DFA

NFA to DFA

DFA

NFA to DFA

DFA

NFA to DFA NFA \boldsymbol{a} a \boldsymbol{a} **DFA** \boldsymbol{a} $\{q_1,q_2\}$

NFA to DFA NFA \boldsymbol{a} a \boldsymbol{a} **DFA** \boldsymbol{a} $\{q_1,q_2\}$ a,b74

NFA to DFA: Remarks

ullet We are given an NFA M

- We want to convert it
- to an equivalent DFA

M'

With

$$L(M) = L(M')$$

If the NFA has states

$$q_0, q_1, q_2, \dots$$

the DFA has states in the powerset

$$\emptyset, \{q_0\}, \{q_1\}, \{q_1, q_2\}, \{q_3, q_4, q_7\}, \dots$$

Procedure NFA to DFA

1. Initial state of NFA:

 q_0

Initial state of DFA:

 $\{q_0\}$

Example

DFA

rocedure NFA to DFA

- 2. For every DFA's state
- $\{q_i, q_j, ..., q_m\}$

Compute in the NFA $\delta^*(q_i,a)$,

$$\delta * (q_i, a),$$

$$\delta * (q_j, a),$$

$$= \{q'_i, q'_j, ..., q'_m\}$$

Add transition

$$\delta(\{q_i,q_j,...,q_m\}, a) = \{q'_i,q'_j,...,q'_m\}_{TS}$$

Example

DFA

$$\underbrace{\{q_0\}} \qquad \qquad \underbrace{\{q_1,q_2\}}$$

$$\delta(\{q_0\},a) = \{q_1,q_2\}$$

Procedure NFA to DFA

- Repeat Step 2 for all letters in alphabet,
- until
- no more transitions can be added.

Example \boldsymbol{a} NFA a \boldsymbol{a} **DFA** \boldsymbol{a} $\{q_1,q_2\}$

a,b

82

Procedure NFA to DFA

• 3. For any DFA state $\{q_i, q_j, ..., q_m\}$

If some q_j is a final state in the NFA

Then,
$$\{q_i,q_j,...,q_m\}$$

is a final state in the DFA

83

Example \boldsymbol{a} NFA a $q_1 \in F$ ab**DFA** \boldsymbol{a} $\{q_0\}$ $\{q_1,q_2\}$ $\{q_1,q_2\}\!\in\!F'$ a,b84

Theorem

Take NFA M

Apply procedure to obtain DFA $\,M'$

Then M and M' are equivalent :

$$L(M) = L(M')$$

Finally

We have proven

Languagesacceptedby NFAsLanguagesacceptedby DFAs

We have proven

Languages
accepted
by NFAsLanguages
accepted
by DFAs

Regular Languages

We have proven

Regular Languages

Regular Languages